最小的正整数是1。和整数一样,正整数也是一个可数的无限集合。正整数为大于0的整数,也是正数与整数的交集。
最小的正整数是多少
1是最小的正整数,正整数又可分为质数,1和合数。质数是一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;合数是指自然数中除了能被1和本身整除外,还能被0除外的其他数整除的数。
正整数的唯一分解定理又称为算术基本定理,即每个大于1的自然数均可写为若干个质数的幂的积,而且这些素因子按大小排列之后,写法是唯一的。
正整数的定义
正整数,为大于0的整数,也是正数与整数的交集。正整数又可分为质数,1和合数。正整数可带正号(+),也可以不带。如:+1、+6、3、5,这些都是正整数。0既不是正整数,也不是负整数(0是整数)。
和整数一样,正整数也是一个可数的无限集合。在数论中,正整数,即1、2、3……;但在集合论和计算机科学中,自然数则通常是指非负整数,即正整数与0的集合,也可以说成是除了0以外的自然数就是正整数。正整数又可分为质数,1和合数。正整数可带正号(+),也可以不带。
正整数的性质
正整数的唯一分解定理:又称为算术基本定理。
即:每个大于1的自然数均可写为若干个质数的幂的积,而且这些素因子按大小排列之后,写法是唯一的。
离散不等式
若X,N∈N*,则X>N等价于X≥N+1。
整数的分类
整数分类:我们以0为界限,将整数分为三大类:
1、正整数,即大于0的整数,如,1,2,3…
2、0既不是正整数,也不是负整数(0是整数)。
3、负整数,即小于0的整数,如,-1,-2,-3…
正整数分类:我们知道正整数的一种分类办法是按照其约数或积因子的多少来划分的,比如仅仅有两个的(当然我们总是多余地强调这两个是1和其本身),我们就称之为质数或素数,而多于两个的就称之为合数。
本文链接:http://jtjycn.demo.zzsc8.com/post/19163.html
copyright © 2015-2024 All Right Reserved 中学生必备网 版权所有
免责声明:本站部分内容来源于网络及网友投稿,如果您发现不合适的内容,请联系我们进行处理,谢谢合作!