二次函数二次项系数决定抛物线的开口方向和大小,也是解二次方程的关键因素之一。
二次项系数是二次方程中二次项的系数,也就是x的平方的系数。在一般的二次方程ax²+bx+c=0中,a就是二次项系数,这个系数可以影响二次方程的性质,例如当a>0时,二次方程的图像开口朝上,当a<0时,二次方程的图像开口朝下。因此,二次项系数是解析二次方程和分析二次方程图像的重要参数之一。
二次函数二次项系数是什么
二次函数y=ax^2+bx+c(a≠0),其中二次项x^2前面的系数a叫做二次项系数,x前面的系数b叫做一次项系数,c叫做常数项。
比如:y=3x²+2x+1,3是二项式系数,2是一次项系数,1是常数项。任何一个一元二次方程都可以转换成ax²+bx+c=0(a≠0)。
这里面a就是二次项系数,也就是说,(a的一次幂+x的一次幂)整个整体,为二次项。
二次函数与一元二次方程的关系
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0,
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1、二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到。
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了,这给画图象提供了方便。
2、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a)。
3.、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。
4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x²,0)和B(x²,0),其中的x1,x2是一元二次方程ax^2+bx+c=0,(a≠0)的两根。这两点间的距离AB=|x²-x²|。
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点。当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。
5、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a。
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6、用待定系数法求二次函数的解析式:
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x²)(x-x²)(a≠0)。
7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
本文链接:http://jtjycn.demo.zzsc8.com/post/19517.html
copyright © 2015-2024 All Right Reserved 中学生必备网 版权所有
免责声明:本站部分内容来源于网络及网友投稿,如果您发现不合适的内容,请联系我们进行处理,谢谢合作!